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Abstract

Population stratification can cause spurious associations in population–based association studies. Several statistical
methods have been proposed to reduce the impact of population stratification on population–based association studies.
We simulated a set of stratified populations based on the real haplotype data from the HapMap ENCODE project, and
compared the relative power, type I error rates, accuracy and positive prediction value of four prevailing population–based
association study methods: traditional case-control tests, structured association (SA), genomic control (GC) and principal
components analysis (PCA) under various population stratification levels. Additionally, we evaluated the effects of sample
sizes and frequencies of disease susceptible allele on the performance of the four analytical methods in the presence of
population stratification. We found that the performance of PCA was very stable under various scenarios. Our comparison
results suggest that SA and PCA have comparable performance, if sufficient ancestral informative markers are used in SA
analysis. GC appeared to be strongly conservative in significantly stratified populations. It may be better to apply GC in the
stratified populations with low stratification level. Our study intends to provide a practical guideline for researchers to select
proper study methods and make appropriate inference of the results in population-based association studies.
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Introduction

Population-based association studies are powerful for gene

mapping of complex diseases [1–3]. Population–based association

studies detect non-random associations between alleles and disease

status using unrelated individuals. Potential population stratifica-

tion in unrelated sample may cause spurious positive or negative

associations in population-based association studies [4]. Several

statistical methods have been proposed to reduce the impact of

population stratification on population-based association studies.

These approaches include three major categories: structured

association (SA) [5,6], genomic control (GC) [7] and principal

components analysis (PCA) [8]. SA is based on the presumption

that population structure and individual ancestries can be

estimated using a set of ancestral informative markers (AIMs)

[5,6]. We can then conduct association tests that condition on the

inferred individual ancestries within each subpopulation. In the

method of GC, it is assumed that original test statistics at all loci

are inflated by population stratification in a similar way with a

similar magnitude [7]. Therefore, the effect of population

stratification can be assessed using a set of disease-unlinked

marker loci, providing a correction factor that can then be applied

to adjust for statistical bias at candidate loci. For PCA method,

classical principal components analysis is first applied to genotype

data to model ancestral differences between cases and controls,

which are then used to correct allele frequency variations at

candidate loci across ancestral populations [8]. Based on the

corrected data, we can conduct association tests correcting for

population stratification.

SA, GC and PCA all have been widely used in genetic studies

[9–13]. An outstanding question, however, is the relative

performance among these methods. Because of different hypoth-

eses and algorithms, the performance and effectiveness under

different situations of these methods may be different. By now,

only limited comparisons have been conducted to evaluate and

compare the relative performance of these methods to control for

population stratification [14–16]. In these studies, not all of the

methods aforementioned were studied. For example, the newest

PCA method implemented in EIGENSOFT [8] was usually not

studied. Furthermore, the previous studies compared the relative

performance of these methods under only some limited parameter

settings (e.g., range of sample sizes), which may limit the generality

of their results.

In this study, we used the real haplotype data retrieved from the

HapMap ENCODE project to simulate a set of stratified

populations. We compared the relative performance among four

prevailing population-based association study methods: traditional

case-control test (TCCT), SA (implemented in STRUCTURE &

STRAT), GC (implemented in EIGENSOFT) and PCA (imple-

mented in EIGENSOFT) under various scenarios, considering
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population stratification levels, sample sizes, frequencies of disease

susceptible allele and numbers of AIMs (for SA).

Methods

Data Simulation
We simulated a set of stratified populations based on the real

haplotype data from the HapMap ENCODE project. The HapMap

ENCODE project genotyped dense sets of SNPs across ten 500 kb

regions in four populations. Phased haplotype data of Caucasians

with northern and western European ancestry (CEPH) and Yoruba

from Ibadan (YRI) of Africa were downloaded from HapMap

ENCODE website (http://www.HapMap.org/downloads/phasing/

2005-03_phaseI/ENCODE/). Within each ENCODE region, we

selected the set of informative marker loci, which were genotyped in

both CEPH and YRI, and were either polymorphic in at least one

population or monomorphic, but had different alleles in the two

populations. 12,867 informative marker loci were finally selected

from the 10 HapMap ENCODE regions. Using the Kosambi map

function [17], recombination fractions between adjacent informative

marker loci were converted from the genetic map distances reported

by the HapMap ENCODE project.

Based on the CEPH and YRI haplotype data and derived

recombination fractions for informative marker loci, we first

simulated the haplotype of 2000 CEPH and 2000 YRI as founder

populations. CEPH and YRI founders were then separately and

randomly mating for 20 generations to generate two discrete

subpopulations. During this process, we assumed that all markers

were under Hardy-Weinberg equilibrium and randomly recom-

bined according to the derived recombination fractions. Popula-

tion size was kept constant in each subpopulation. Finally, the

simulated CEPH and YRI subpopulations were mixed together to

generate a structured population.

Specific for this study, we randomly selected 240 of 12,867

informative marker loci evenly distributed across the 10 ENCODE

regions with D’,0.3 in the simulated CEPH and YRI subpopu-

lations for each simulation [18]. Allele frequencies at each of the 240

loci were recorded respectively in the simulated CEPH and YRI

subpopulations, and in the final structured populations. The causal

locus used to simulate individual disease phenotype was randomly

selected from the 240 loci with preset allele frequency in the

simulated structured populations and different allele frequencies in

the simulated CEPH and YRI subpopulations (0.20,frequency

difference,0.30), to ensure the existence of population stratification

at the causal locus in the simulated structured populations.

Single causal gene additive model was implemented to generate

individual disease status in simulated CEPH and YRI subpopu-

lations, respectively [19]. We assumed that a bi-allelic locus was

associated with disease status. The relationship among population

prevalence (K), genotype relative risk (GRR) (r), allele frequency

(p) and penetrance of genotypes at the causal locus (fi) in the

simulated structured populations can be expressed as

f0~K= 1{2pz2prð Þ,

f1~rf0,

f2~2rf0{f0,

where fi denotes the penetrance of the genotypes at the causal

locus with i copy (copies) of disease susceptible allele (i = 0, 1 or 2).

The GRR was assigned 2.0 or 1.0 to simulate the causal locus with

or without genetic effect on individual disease status. The

population prevalence (K) was assigned 0.01 in all models.

Equivalent numbers of cases and controls were randomly drawn

from the simulated structured populations for each parameter

setting. The above simulation procedure was repeated until

sufficient cases and controls were obtained.

Parameter design
To compare the relative performance of the four association

study methods in the presence of population stratification, we

simulated a set of populations under various stratification

parameters to model no, low, moderate and high degrees of

population stratification. Stratification levels were controlled by

sampling cases and controls from the simulated CEPH and YRI

subpopulations with different proportions [15]. In addition, we

assessed the effects of sample sizes and frequencies of disease

susceptible allele on the performance of the four analytical

methods in the stratified populations with high stratification level.

The parameter designs are presented in Table 1.

Due to the extensive computational cost required by SA (1000

simulations using 120 AIMs need at least 30 days of computing

time for each parameter setting at our computer cluster), we

initially selected 40 of 240 informative marker loci as AIMs to

assess the performance of SA. To investigate the effect of numbers

of AIMs on the performance of SA, we further conducted SA

analysis using various numbers of AIMs (Table 1).

Data analysis
1000 simulations were conducted for each parameter setting. In

each simulation, all 240 loci were analyzed by chi-square tests

(TCCT) and EIGENSOFT, which conducted both GC and PCA

tests. For GC, correction factor l was first estimated by

EIGENSOFT using 239 loci (excluding the causal locus). The

estimated correction factor l was then used to adjust the statistics at

the causal locus. For SA tests implemented in STRUCTURE &

STRAT, 40 of 240 loci were first randomly selected from 9

ENCODE regions (excluding the region containing the causal locus)

with minor allele frequencies.0.01 in the simulated structured

populations. We calculated the average allele frequency difference

at the 40 loci between the simulated CEPH and YRI subpopula-

tions. In 1000 simulations, the average allele frequency difference

was 0.117 (standard deviation = 0.116). The 40 loci were analyzed

by STRUCTURE to infer individual ancestries as AIMs. The

remaining 200 loci were then analyzed by STRAT to conduct

association tests incorporating the inferred population structure by

STRUCTURE. All the above software was running under default

parameters recommended by the program developers.

In each simulation, positive result was defined as P val-

ue, = 0.05 obtained at the causal locus. Power and type I error

Table 1. Parameter configurations in the simulation studies.

Stratification levelsa Sample sizesb FDSAc Numbers of AIMs

0.3020.30, 400 0.1060.02 40

0.3520.25 800 0.2060.02 80

0.4020.20 1200 0.3060.02 120

0.5020.10 2000 0.4060.02 200

Note: a denote the proportions of YRI individuals in cases-controls, respectively.
bdenote the numbers of total samples comprising of equivalent cases and

controls.
cdenote the frequencies of disease susceptible allele.
dThe basic parameter configuration is highlighted in bold. Each possible
parameter setting can be obtained by replacing one entry of the basic
parameter configuration with a different entry of corresponding parameter.

doi:10.1371/journal.pone.0003392.t001

Population Stratification
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rates were calculated respectively as the proportions of positive

results obtained at the causal locus with (GRR = 2.0) and without

(GRR = 1.0) phenotypic effect in 1000 simulations. Additionally,

because positive results can be caused by population stratification

except for true disease-locus association [4], it is not reasonable to

directly compare the power of these analytical methods, which

have different type I error rates. To precisely evaluate the relative

performance of the four analytical methods, we further calculated

accuracy and positive prediction value (PPV) for each method.

Positive and negative results obtained at the causal locus with

phenotypic effect (GRR = 2.0) were regarded as true positive (TP)

and false negative (FN), respectively. Similarly, positive and

negative results obtained at the causal locus without phenotypic

effect (GRR = 1.0) were regarded as false positive (FP) and true

negative (TN), respectively. For each parameter setting, in 2000

simulations (1000 simulations for power and 1000 simulations for

type I error rates), accuracy and PPV were derived as

accuracy~ TPzTNð Þ= TPzTNzFPzFNð Þ,

PPV~TP= TPzFPð Þ:

Results

The comparison results of the four association study methods

under different scenarios are summarized in figures 1,4. It is

obvious that the performance of all analytical methods is affected

by various parameters investigated here. The effects of each

parameter on the performance of the four analytical methods are

detailed in the following:

Stratification levels
Table 2 summarizes the average correction factor l estimated

by GC approach under various stratification levels. l was larger

than 2.8 in the presence of population stratification, and was

greatly increased with increasing stratification levels. Figure 1

presents the performance of the four analytical methods under

various stratification levels. As previously reported, the perfor-

mance of TCCT was significantly affected by population

stratification. The type I error rates of TCCT were much higher

than that of SA, GC and PCA at the same stratification level. For

accuracy and PPV, TCCT showed significantly decreasing trends

with increasing stratification levels. SA and PCA outperformed

GC in almost all performance indexes except for type I error rates

and PPV in the stratified populations with low and moderate

stratification levels. With increasing stratification levels, SA

showed significant increase in type I error rates as well as

decreases in accuracy and PPV, which were not observed in PCA.

Sample sizes
With the increase of sample sizes from 400 to 2000, both power

and type I error rates tended to increase in all analytical methods

except for PCA. The type I error rates of PCA were not significantly

Figure 1. Performance of the four analytical methods in stratified populations with stratification levels varying from 0.320.3 to
0.520.1 (sample size = 1200, frequency of disease susceptible allele = 0.2060.02 and number of AIMs = 40).
doi:10.1371/journal.pone.0003392.g001

Population Stratification
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inflated by larger sample sizes (Figure 2). Compared with SA, PCA

yielded higher accuracy and PPV under the same sample sizes.

Frequencies of disease susceptible allele
Figure 3 provides an overview of comparison results with

respect to frequencies of disease susceptible allele. With the

increase of frequencies of disease susceptible allele from 0.0160.02

to 0.0460.02, we observed a consistent decrease of type I error

rates in all analytical methods except for PCA, which attained

much lower type I error rates than other analytical methods.

Compared with SA, PCA also performed better in accuracy and

PPV under the same frequencies of disease susceptible allele.

Numbers of AIMs
As shown by figure 4, the type I error rates of SA significantly

decreased with increasing numbers of AIMs, and became close to

0.05 when 120 or more AIMs were used. In contrast, the power of

SA was not significantly affected by numbers of AIMs.

Discussion

In the simulation study for stratification levels, we observed

significant adverse influence of population stratification on TCCT,

which has been reported by previous studies [20]. Among the

three analytical methods against population stratification, SA and

PCA generally outperformed GC. It is impressive that the

performance of PCA was very stable under various stratification

levels, indicating its good ability in controlling for population

stratification. Additionally, the computational cost required by

PCA is much smaller than that of SA [8]. We observed a high type

I error rate for SA in the stratified populations with high

stratification level, which may be explained by the small set of

AIMs that we used. Increasing the numbers of AIMs significantly

decreased the type I error rates of SA. Considering the similar

performance between SA and PCA when 120 or more AIMs were

used, we believe that SA and PCA have comparable performance

if sufficient AIMs are applied in SA analysis. However, due to the

extensive computational cost required by SA, we suggest that PCA

should be a better choice to conduct population-based association

studies correcting for population stratification, especially in the

studies that need analyze large amounts of genetic markers.

In our study, GC performed worse than SA and PCA in most

situations. In the stratified populations with low stratification level,

GC attained the lowest type I error rate and moderately lower

power than SA and PCA, which is consistent with previous

observation [15]. In the stratified populations with moderate and

high stratification levels, the average correction factor l estimated

by GC became very large (.7.5). After the adjustment of l, the

power of GC was much lower than that of SA and PCA. GC

appeared to be strongly conservative in significantly stratified

populations, which has been reported by previous studies [14,16].

The loss of power for GC may be attributed to the hypothesis in GC

that the original statistics at both candidate loci and null loci were

affected by population stratification in a similar way with a similar

Figure 2. Performance of the four analytical methods in stratified populations with sample sizes varying from 400 to 2000
(stratification level = 0.520.1, frequency of disease susceptible allele = 0.2060.02 and number of AIMs = 40).
doi:10.1371/journal.pone.0003392.g002

Population Stratification
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magnitude [7], which may result in an overestimate of l for

candidate loci, especially in significantly stratified populations [14].

Based on the results of our and other previous studies [14,16], we

suggest that the performance of GC correcting for population

stratification is affected by population stratification levels. It may be

better to apply GC in slightly stratified populations.

Another interesting finding is the masking effects of population

stratification on true disease-gene associations [4]. With increasing

stratification levels, we simultaneously observed decreasing power

and increasing type I error rates. It has be suggested that

population stratification can cause not only false positive

associations, but also false negative associations [4]. Our result

confirms that population stratification can result in a loss of power

Figure 3. Performance of the four analytical methods in stratified populations with frequencies of disease susceptible allele
varying from 0.1060.02 to 0.4060.02 (stratification level = 0.520.1, sample size = 1200 and number of AIMs = 40).
doi:10.1371/journal.pone.0003392.g003

Figure 4. Performance of SA with numbers of AIMs varying
from 40 to 200 (stratification level = 0.520.1, sample
size = 1200 and frequency of disease susceptible al-
lele = 0.2060.02).
doi:10.1371/journal.pone.0003392.g004

Table 2. Average corrector factor l estimated by GC in
populations with various stratification levels.

Stratification levelsa l

Powerb Type I error ratesc

0.3020.30 1.10 1.04

0.3520.25 2.98 2.85

0.4020.20 7.56 7.51

0.5020.10 11.93 11.91

Note: a denote the proportions of YRI individuals in cases-controls, respectively.
bwere calculated from power comparison results.
cwere calculated form type I error rate comparison results.
doi:10.1371/journal.pone.0003392.t002

Population Stratification
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through masking true disease-gene associations in addition to

causing false positive associations. It should be careful to explain

negative associations yielded from population-based association

studies in the presence of population stratification.

Sample sizes and frequencies of disease susceptible allele are the

two other major factors affecting the accuracy of gene mapping.

For sample sizes, we found that the impact of population

stratification on population–based association studies tended to

increase with increasing sample sizes. Our result confirms the

observation from previous study that larger sample sizes may not

only lead to higher power, but also higher type I error rates in the

presence of population stratification [21]. The increase of type I

error rates may partially be explained by increasing genetic

heterogeneity in larger sample. Additionally, the performance of

the four analytical methods was significantly affected by

frequencies of disease susceptible allele. Within the frequencies

range of disease susceptible allele that we investigated, lower type I

error rates and higher accuracy and PPV were generally observed

with larger frequencies of disease susceptible allele.

Four aspects from our study deserve further emphasized. First,

to the best of our knowledge, all of existing performance

comparison studies directly calculated the positive results obtained

at candidate loci with and without phenotypic effect as power and

type I error rates, respectively [14–16]. The potential problem in

above design is that the positive results can not only be attributed

to true disease-loci associations, but also to the false positive results

caused by population stratification [4]. This makes it difficult to

precisely evaluate and compare the relative performance of

different analytical methods, which have different type I error

rates. To overcome this limitation, in our study, we further

calculated accuracy and PPV for each method, which can provide

more accurate information about the performance of the four

association study methods. For example, as shown by figure 1, the

power of TCCT significantly decreased with increasing stratifica-

tion levels in the presence of population stratification, which can

partly be explained by the increase of false negative results caused

by population stratification. Therefore, directly using power to

evaluate the performance of different analytical methods may lead

to inaccurate conclusion in the presence of population stratifica-

tion. Second, we used the real CEPH and YRI haplotype data

from the HapMap ENCODE project to simulate structured

populations. The simulated data sets are closer to realistic scenario

compared with existing similar simulation studies [14–16], which

ensures the robustness and practical applicability of our results.

Additionally, compared with the genome-wide data available in

the HapMap, the ENCODE regions were identified with

approximately tenfold higher density of SNPs in extensive

resequencing data, which enables the ENCODE data to provide

richer and more accurate information about genetic variation

across different populations [22]. Third, admixture model is

another common population structure model in addition to the

discrete model we used here [23]. Due to the difficulty of

controlling population stratification levels under the admixture

model, we evaluated the performance of the four analytical

methods in stratified populations without admixture. The discrete

model is extensively used to simulate stratified populations [8,24].

The study results under the discrete model can be generally

extended to more complex conditions, such as stratified popula-

tions with admixture. Fourth, because of extensive computational

cost, we randomly selected 40 of 240 informative marker loci as

AIMs to compare SA with other methods. In practice, we can use

more AIMs, which will improve the performance of SA. Selecting

a set of AIMs with maximizing ancestral information is an

alternative for improving the performance of SA. For instance,

AIMs can be selected to maximize absolute allele frequency

differences among different ancestral populations [25]. However,

these methods require prior knowledge about individuals’

membership or ancestries to known populations, which are usually

not available or not certain in practice.

In summary, we compared the relative performance among four

prevailing association study methods under various scenarios. Our

efforts can provide a practical guideline for researchers to select

proper study methods and make appropriate interpretation of the

results in population-based association studies.
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